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A B S T R A C T

The Santa Barbara Channel, CA is a highly productive region where wind-driven upwelling and mesoscale

eddies are important processes driving phytoplankton blooms. In recent years, the spring bloom has been

dominated by the neurotoxin-producing diatom, Pseudo-nitzschia spp. In this paper, we relate a 1.5-year

time series of Pseudo-nitzschia spp. abundance and domoic acid concentration to physical, chemical, and

biological data to better understand the mechanisms controlling local Pseudo-nitzschia spp. bloom

dynamics. The data were used to define the ranges of environmental conditions associated with Pseudo-

nitzschia spp. bloom development in the Santa Barbara Channel. The time series captured three large toxic

events (max. particulate domoic acid concentration, pDA �6000 ng L�1; max. cellular domoic acid

concentrations, cDA �88 pg cell�1) in the springs of 2005–2006 and summer 2005 corresponding to

bloom-level Pseudo-nitzschia spp. abundance (>5.0 � 104 cells L�1). In general, large increases in Pseudo-

nitzschia spp. abundance were accompanied by increases in cDA levels, and cDA peaks preceded pDA

peaks by at least one month in both the springs of 2005 and 2006. Statistical models incorporating

satellite ocean color (MODIS-Aqua and SeaWiFS) and sea surface temperature (AVHRR) data were created

to determine the probability that a remotely sensed phytoplankton bloom contains a significant

population of toxic Pseudo-nitzschia spp. Models correctly estimate 98% of toxic bloom situations, with a

7–29% rate of false positive identification. Conditions most associated with high cDA levels are low sea

surface temperature, high salinity, increased absorption by cDOM (412 nm), increased reflectance at 510/

555 nm, and decreased particulate absorption at 510 nm. Future efforts to merge satellite and regionally

downscaled forecasting products with these habitat models will help assess bloom forecasting

capabilities in the central CA region and any potential connections to large-scale climate modes.

� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Several researchers have called for long-term monitoring
approaches to the study of a major toxin producer on the West
Coast of North America, the diatom genus Pseudo-nitzschia (Trainer
et al., 2000). The Southern California Bight in particular is a region
where Pseudo-nitzschia is the dominant harmful bloom former and
the only toxic group recorded in deleterious numbers for the Santa
Barbara Channel (SBC) (Fryxell et al., 1997). Several Pseudo-

nitzschia species produce the neurotoxic amino acid, domoic acid
(DA), which bioconcentrates in shellfish and finfish and can result
in severe, even fatal, illness for both marine mammals (Fritz et al.,
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1992; Scholin et al., 2000) and humans (Perl et al., 1990). DA
synthesis has been linked to physiological stress in the form of
silicon-, phosphate-, iron-, or copper-limitation (Pan et al., 1998;
Rue and Bruland, 2001; Maldonado et al., 2002; Bates et al., 1998;
Wells et al., 2005), and toxicity is not always correlated to the
abundance of Pseudo-nitzschia spp. cells in environmental samples
(Trainer et al., 2002; Marchetti et al., 2004; Anderson et al., 2006).

Correct prediction of Pseudo-nitzschia spp. abundance and
domoic acid distributions relies on knowledge of population-
specific variability over a range of local conditions. Two steps that
would aid in the development of a regionally synoptic method with
application to remote-sensing platforms are: (1) collection of a
time series of relevant field data to identify and index environ-
mental parameters associated with toxic bloom forcing in order to
predict the probability of a toxic bloom, and (2) application of these
parametric constraints to predict the probability of toxic events

mailto:clrander@ucsc.edu
http://www.sciencedirect.com/science/journal/15689883
http://dx.doi.org/10.1016/j.hal.2008.10.005


Fig. 1. At the Santa Barbara Channel (SBC) study site, seven Plumes and Blooms

(PnB) stations were sampled monthly from the Santa Barbara mainland to Santa

Rosa Island from November 2004 to June 2006. For validation of the Pseudo-nitzschia

spp. abundance and toxin models, Rrs (0+, l) values were retrieved for 16 SBC-LTER

stations previously sampled during a toxigenic Pseudo-nitzchia australis bloom in

May 2003.
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from satellite-derived data for the remote assessment of new
blooms and the transport of existing ones. Iglesias-Rodriguez et al.
(2002) applied parametric thresholds from field data to constrain a
model that uses satellite imagery to detect coccolithophorid
blooms. Such a statistical approach is likely necessary for Pseudo-

nitzschia blooms in the SBC since algorithm-based and bio-optical
methods like those used for other taxa (Brown and Yoder, 1994;
Subramanian and Carpenter, 1994; Stumpf et al., 2003; Westberry
and Siegel, 2005; Craig et al., 2006) do not appear practical for the
detection of a pennate diatom (Sathyendranath et al., 1997). With
models that properly constrain the magnitudes of physical,
chemical, and optical parameters associated with Pseudo-nitzschia

blooms and toxin production, available satellite products could be
utilized to remotely estimate the probability of local toxic bloom
occurrence. Remote estimation would enable rapid detection and
monitoring of these local toxic events when traditional shipboard
measurements are not available.

The high numbers of toxic cells during bloom periods (max. 106

cells L�1) in the SBC make HAB species a significant group for
considerations of phytoplankton community structure, public
health, and biogeochemical cycling. In many coastal systems,
rivers are a significant source of eutrophication, but in the SBC,
riverine input of nutrients appears to contribute very little to the
annual nutrient budget (McPhee-Shaw et al., 2007). Time series
analyses of synoptic wind forcing show the presence of upwelling-
favorable winds during spring and summer in the SBC (Oey et al.,
2001; Winant et al., 2003; Otero and Siegel, 2004) along with an
increased probability of mesoscale eddy formation in the western
portion of the Channel (Harms and Winant, 1998; Oey et al., 2001).
This is a system that relies on the mixing of remineralized nutrients
from deep water to support phytoplankton growth and conse-
quently selects for spring bloom taxa capable of withstanding high
upwelling shear and abrupt peaks in nutrient supply. Pseudo-

nitzschia appears to have a high probability of blooming during or
just after upwelling episodes (Trainer et al., 2000; Kudela et al.,
2005). Indeed, toxic Pseudo-nitzschia blooms have coincided with
spring upwelling in the SBC from 2002 to 2004 and have been
associated with the only major stranding events reported for
marine mammals in those years, indicating that such blooms may
be isolated to spring months.

The results of a 1.5 year time series of Pseudo-nitzschia spp.
abundance and domoic acid concentrations collected monthly
along a channel-wide transect in the SBC are presented here and
used to develop statistical models from a suite of environmental
parameters. The goal of this initial model is to predict the presence
or absence of bloom levels of toxic cells. Model performance is
discussed in terms of the percentage of correct bloom events
predicted given a set of (1) in situ and (2) remotely sensed
environmental conditions.

2. Methods

Monthly cruises were conducted in the SBC aboard the R/V
Shearwater over an 18-month period (November 2004 to June
2006) as part of the UCSB Plumes and Blooms (PnB) project to
study optical, physical, biological, and chemical properties along a
seven-station, cross-channel transect from Santa Cruz Island to the
mainland coast (Fig. 1). The northern- and southern-most stations
represent shallow, shelf sites (45 and 75 m, respectively), while the
remaining sites are in waters deeper than 250 m. This total
distance of approx. 40 km is sampled in a single day. Conductivity-
temperature-depth (CTD) profiles were collected at each station
with a Sea-Bird Electronics 911 plus CTD on a Sea-Bird Electronics
SeaCat Profiler fitted with twelve 8-L Niskin bottles. Surface water
samples were collected at each station for determination of
chlorophyll-a concentration, dissolved inorganic nutrient concen-
tration, phytoplankton cell abundance and domoic acid concen-
tration. All collection procedures (excluding domoic acid samples)
are in accordance with the techniques recommended by the U.S.
JGOFS and SeaWiFS programs (Knap et al., 1993; Mueller and
Austin, 1995).

Chlorophyll and phaeopigment analysis was performed with a
Turner Designs 10AU digital fluorometer. For chlorophyll analysis,
250 mL of raw seawater were filtered through a Whatman GF/F
25 mm glass fiber filter, which was immediately frozen in liquid
nitrogen and then transferred to a �70 8C freezer. Pigments for the
fluorometric determination of chlorophyll and phaeopigments
were extracted in 90% acetone for 24 h and fluorescence measured
before and after the addition of two drops of 1.2 M HCl.

Dissolved inorganic nutrient analysis was performed by the
UCSB Marine Science Institute Analytical Lab using flow injection
techniques (Johnson et al., 1985) on seawater collected in 20-mL
plastic scintillation vials. Detection limits for nitrate (NO3

�), ortho-
phosphate (PO4

=), and silicic acid (Si(OH)4) are 0.1, 0.05, and
0.2 mM, respectively.

For analysis of absorption spectra, one liter of raw seawater was
filtered through a Whatman GF/F 25 mm glass fiber filter which
was immediately frozen in liquid nitrogen and transferred to the
laboratory. Filters were then scanned with a Shimadzu (UV-2401
UV/vis) scanning dual-beam spectrophotometer using a beta
correction factor determined from the local phytoplankton
population (N. Guillocheau, UCSB, personal communication). The
initial absorption spectrum measures all particles on the filter (ap).
After 24–36 h of extraction in 100% methanol, the filters were re-
scanned in the spectrophotometer to obtain the pigment-free,
detrital absorption spectra (ad). Absorption spectra for the
phytoplankton fraction (aph) are calculated as the difference
between the particulate and detrital absorption spectra. The
colored dissolved, or ‘gelbstoff,’ fraction (ag) is determined using a
pre-rinsed, all-glass filtering rig fitted with a 47 mm, 0.2 mm
membrane filter. The absorption spectrum of the filtrate is
measured with the Shimadzu UV/vis spectrophotometer with a
matched set of 10-cm quartz cuvettes and Millipore Q water as the
reference.

Phytoplankton abundance estimates were determined from
whole water samples (125-mL) collected at each station from
surface Niskin bottles on a CTD rosette. Samples were preserved in
37% formalin (Bouin’s solution with picric acid; Fisher Scientific)
with a final concentration of 2% for phytoplankton cell counts using
the Utermöhl method for the inverted microscope (Hasle, 1978).
Aliquots were settled in 10- and 25-mL settling chambers for ca.
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24 h. Cells over five microns in length were quantified and
identified at �320 magnification, and the abundance of Pseudo-

nitzschia spp. was determined to the genus level.
Particulate domoic acid (pDA) analysis was performed on all

surface samples collected along the PnB transect. For each sample,
500 mL of seawater were filtered through a Whatman GF/F 25-mm
glass fiber filter, immediately frozen in liquid nitrogen and then
transferred to a �70 8C freezer for storage. HPLC analysis of DA
concentrations in the extracts was done using FMOC–Cl reagent
solution to derivatize domoic acid from microalgal cells with kainic
acid added as an internal standard (Pocklington et al., 1990; Wright
and Quilliam, 1995). Cellular domoic acid (cDA) concentrations
were derived by normalizing pDA to Pseudo-nitzschia spp. cell
abundance and expressed in units of picograms DA cell�1.

3. Results

3.1. Descriptive statistics

Over the study period November 2004 to June 2006, the
abundance of Pseudo-nitzschia spp. in the SBC exhibited strong
seasonality at all seven PnB stations with the highest cell
abundance (>4.0 � 105 cells L�1) occurring on June 2, 2005 at
station 7, near Santa Cruz Island (Fig. 2a). This maximum value
Fig. 2. Time series plots of (a) Pseudo-nitzschia spp. abundance, (b) particulate DA (pDA

seven-station PnB transect. For pDA and cDA, the lower panels show the time series p
falls in line with the overall trend of major abundance peaks in
spring months (April–June) and minor peaks in fall (September–
November). Background levels of Pseudo-nitzschia spp. abun-
dance in all other months have a mean of �1.1 � 104 cells L�1,
which is consistent with the results of an independent study
showing a significant year-round presence of the Pseudo-nitzschia

genus at a coastal site on the continental shelf in the SBC
(Mengelt, 2006).

Four of the particulate and cellular DA measurements were
considered extreme values (pDA: 16,000–49,000 ng L�1; cDA:
208–216 pg cell�1) with the potential to mask the smaller
amplitudes in the time series of toxin concentration. These values
far surpass those reported elsewhere from either field or laboratory
studies, and so they were not included in the statistical models
discussed in the next section. The time series of pDA and cDA with
and without these extreme points are shown in Fig. 2b and c. In the
absence of outliers, the maximum pDA (5929 ng L�1) was recorded
at station 6 on May 9, 2005 and the maximum cDA (88 pg cell�1) on
September 20, 2006 at station 2. These values are among some of
the highest yet reported for the west coast of North America but are
still within the range reported for blooms of Pseudo-nitzschia spp.
from other locations (R. Kudela, personal communications
Schnetzer et al., 2007; Trainer et al., 2000; Marchetti et al.,
2004; Mengelt, 2006).
), and (c) cellular DA (cDA) sampled from November 2004 to June 2006 across the

lotted without the extreme outlier points.



Fig. 3. Channel-wide means of nitrate (NO3) and silicic acid (Si(OH)4)

concentrations, SST, and CHL over the study period. Note the missing nutrient

data for the November 2005 and May–June 2006 cruises.

Fig. 4. Mean channel-wide Pseudo-nitzschia spp. abundance (�103 cells L�1) and

cDA (pg cell�1) for each cruise; the dashed line demarcates the background mean

Pseudo-nitzschia abundance of �1.0 � 104 cells L�1.
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As with cell abundance, measures of toxin concentration follow
a seasonal cycle with peaks in spring and fall months, inversely
related to the time series of mean sea surface temperature (SST)
and directly related to time series of NO3

�, Si(OH)4, and chlorophyll
(CHL) concentrations (Fig. 3). SST is significantly and negatively
correlated to cell abundance and cDA level (Table 1), which points
to a general association between low SST and toxic events (Figs. 2
and 3). This is consistent with the predominance of toxic bloom
events occurring in the spring upwelling season, which is further
supported by the significant positive correlation between pDA and
sea surface salinity (SSS; Table 1). The magnitude of the spring
toxic event in 2005 was significantly greater than that recorded for
2006 in terms of mean Pseudo-nitzschia spp. abundance, pDA, and
cDA levels. However, this difference is not reflected in mean CHL
biomass and is actually reversed in the nutrient field, with an
obvious extreme in concentrations for March 2006 (Fig. 3).
Concentrations of CHL are significantly but fairly weakly correlated
to both Pseudo-nitzschia spp. abundance (r = 0.34) and pDA
concentration (r = 0.18), indicating that the seasonal rise and fall
of these parameters is not necessarily tied to the absolute
magnitude of phytoplankton biomass (Table 1). It is somewhat
surprising that none of the toxic bloom parameters correlate
significantly with nutrient concentrations or nutrient ratios
(Table 1), contrary to previous laboratory and field reports of
associations between macronutrient availability and both Pseudo-
Table 1
Correlation coefficients (r) for select physical and chemical parameters and the ab

concentration (outliers removed). Bold values indicate p < 0.05 with DF � 100.

P-n abundance pDA cDA SST SSS

P-n abundance **** 0.53 0.07 �0.34 �0.15

pDA **** 0.42 �0.16 0.14
cDA **** �0.27 0.17

SST **** �0.18
SSS ****

CHL

NO3

PO4

Si(OH)4

Si:N

Si:P
nitzschia cell abundance and DA levels (Pan et al., 1996, 1998;
Kudela et al., 2004a,b; Marchetti et al., 2004; Anderson et al., 2006).

The relationship between the frequency of toxic events and
increases in abundance of Pseudo-nitzschia spp. is of particular
relevance for the detection and prediction of harmful blooms. Out
of the 77 cDA measurements in our times series (excluding the two
outlier points) where Pseudo-nitzschia spp. abundance exceeded
the mean of �1 � 104 cells L�1, �66% were above the limit of
detection and �64% were above the maximum cDA level (�2 pg
cell�1) measured during a known toxic event in the SBC (Anderson
et al., 2006). Conversely, only four of the 52 cDA measurements
which exceeded 2 pg cell�1 were found to contain Pseudo-nitzschia

cell abundances below the background mean abundance.
The mean relationship between the abundance of potentially

toxic cells and cDA across all stations for each cruise is shown in
Fig. 4. It is evident from this plot that the majority of bloom
scenarios are accompanied by elevated cDA levels, with notable
exceptions in November 2004 and 2005 when abundances just
exceeding the mean were not comprised of toxic cells. In general,
high Pseudo-nitzschia spp. abundance is accompanied by the
presence of domoic acid, though more weakly related in terms of
absolute magnitude. For example, a sample from station 4 on 3
March 2006 contained �1.9 � 105 cells L�1 but only �1 pg DA
cell�1, while the sample containing the maximum cDA of 88 pg
cell�1 was paired with only a moderate cell count of �4.4 � 104

cells L�1. Indeed, the linear regression relationship between
Pseudo-nitzschia spp. abundance and cDA before and after the
removal of outliers (Fig. 5) is rather poor (from r2 = 0.004 to
r2 = 0.12) and only slightly improved for particulate concentrations
(r2 = 0.28 to r2 = 0.29). A stronger relationship exists for the
particulate and cellular concentrations of DA (r2 = 0.56; Fig. 5),
indicating that the cellular pool is more driven by pDA
concentrations than cell abundance. In other words, there does
not appear to be a straightforward relationship between the
abundance of cells capable of producing toxin and the amount of
undance of Pseudo-nitzschia spp. (P-n abundance), pDA concentration, and cDA

CHL NO3 PO4 Si(OH)4 Si:N Si:P

0.34 0.04 0.03 0.01 �0.06 �0.07

0.18 0.03 �0.06 �0.08 �0.08 �0.12

0.14 �0.03 �0.06 �0.05 �0.01 �0.12

�0.55 �0.62 �0.63 �0.63 0.38 �0.12

�0.14 0.44 0.32 0.41 �0.11 0.23
**** 0.38 0.38 0.44 0.22 �0.25

**** 0.95 0.93 0.09 �0.16

**** 0.92 �0.19 0.01

**** �0.11 �0.34
**** 0.26

****



Fig. 5. A pairs plot of the response variables: Pseudo-nitzschia (P-n) abundance, particulate domoic acid concentration (pDA), and cellular domoic acid concentration (cDA). The

un-transformed distributions for each parameter are highly skewed and, for pDA and cDA, clearly contain outliers (see text). The weak relationships (r2 values) between cell

abundance and toxin concentration underscore the need for predictive models of domoic acid presence in addition to P-n abundance.

Table 2
Legend of predictor and response (in bold) variables used in hindcastor model

development.

Variable Abbreviation Units

Station STN

Day of year DOY

Sea surface temperature SST 8C
Sea Surface temperature-5 day mean SST-5 8C
Sea surface salinity SSS psu

Chlorophyll-a CHL ng L�1

Nitrate NO3 nM

Phosphate PO4 nM

Silicic acid Si(OH)4 nM

Remote-sensing reflectance [412–665 nm] Rrs (0+, l) sr�1

Particulate absorption [412–665 nm] ap(l) m�1

CDOM absorption [412–665 nm] ag(l) m�1

Detrital absorption [412–665 nm] ad(l) m�1

Silicic acid:nitrate Si:N

log10(Silicic acid:nitrate) log(Si:N)

Silicic acid:phosphate Si:P

log10(Silicic acid:phosphate) log(Si:P)

Pseudo-nitzschia spp. abundance P-n abundance cells L�1

log10(Pseudo-nitzschia abundance) log(P � N + 1)

Particulate domoic acid pDA ng L�1

log10(Particulate domoic acid) log(pDA + 1)

Cellular domoic acid cDA pg cell�1

log10(Cellular domoic acid) log(cDA + 1)
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DA present which implies that processes regulating these two
parameters differ. In order to predict the occurrence of toxigenic
blooms, it is thus necessary to produce separate models of Pseudo-

nitzschia spp. abundance and DA concentration, which in
combination will generate predictions of toxic events, not simply
bloom events.

3.2. Predictive models of Pseudo-nitzschia abundance and DA

concentration

3.2.1. Transformations and thresholds

A number of transformations were necessary to normalize the
key response variables used in model development: Pseudo-

nitzschia spp. cell abundance (hereafter referred to as P-n

abundance), pDA, and cDA. Due to their highly skewed distribu-
tions (Fig. 5), the transformation log10(1 + X) was used with the
constant 1 added to avoid negative results in cases when the
untransformed variable was zero. Nutrient parameters were also
log-transformed due to the highly non-linear relationship between
nutrient concentrations, nutrient ratios, and the three response
variables (Blum et al., 2006). All transformed and untransformed
variables (Table 2) were included as potential predictors in model
development.

Histograms of log-transformed pDA and cDA concentrations
(Fig. 6b and c) underscore that 39% and 42% of samples,
respectively, were below detection levels and indicate times of
low or no toxin production by Pseudo-nitzschia spp. in the SBC. As a
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result, there is a distinct bi-modal distribution in both parameters,
and the outliers are clearly separate from the bulk of the non-zero
observations which approximate a normal distribution (Fig. 6b and
c). This is made clear by the parameterized normal density curves
overlaid on the histograms for cDA and pDA (Fig. 6). In contrast,
there was only one water sample in which cells of Pseudo-nitzschia

spp. were not observed (Fig. 4a), and the remaining transformed
values of cell abundance approximate a log-normal distribution
(Campbell, 1995).

Due to the bi-modal nature of toxin distribution (Fig. 6), the
criteria for evaluating model performance were defined in terms of
a cost function that distinguishes between the presence or absence
of domoic acid rather than the prediction of actual concentration.
The threshold for determining presence is then defined as the
minimum, non-zero value observed for pDA (64 ng L�1) and cDA
(1.1 pg cell�1) in the log-transformed histogram (Fig. 6). Similarly,
a ‘‘bloom’’ threshold of 5.0 � 104 cells L�1 was defined for P-n

abundance to reflect large departures in cell abundance from the
mean of �1 � 104 cells L�1. The cost function is cast in terms of
these thresholds for cell abundance, pDA, and cDA such that model
predictions can be divided into correct (#correct blooms or non-
blooms predicted/#blooms or non-blooms observed) and incorrect
estimates (#incorrect blooms or non-blooms/#blooms or non-
blooms observed) (e.g. Brown and Yoder, 1994; Westberry and
Siegel, 2005). Clearly, the placement of a given threshold in large
part determines how the performance of a model is evaluated. The
thresholds chosen here are based on an empirical assessment of
local ranges in each parameter and are meant to constrain model
predictions to scenarios which could signal the initiation of a toxic
bloom in the SBC.

3.2.2. Development of linear models

It is important to differentiate between the utility of the full
models in describing possible drivers of toxic Pseudo-nitzschia spp.
blooms and the additional goal of producing models that would
allow for the remote detection of the presence of toxic blooms from
satellite data. For each of the three response variables discussed
above, two types of model were created: (1) a full model which
tests the inclusion of all measured parameters, and (2) a remote-
sensing model limited to only those parameters that can be
accurately estimated from satellite data. In some cases, these
remote-sensing models were empirically derived using a stepwise
process for selecting a best-fit model whereby only the most
predictive, remote-sensing components were chosen at each step.
Alternatively, the remote-sensing model was a minor manipula-
tion of the best full models (by substitution of a maximum of three
parameters with remote-sensing analogues) only in cases when
this was shown to result in better model performance than the
stepwise process.

Linear hindcasting is an application of linear regression
technique to predictive modeling which enables the ready
evaluation of a predictor and its error while describing how a
given variable is related to the entire dataset (Davis, 1978; Siegel
and Dickey, 1986). This method was used to statistically relate the
cell abundance and toxin concentration data to the many
environmental parameters measured concurrently. The three
log-transformed response variables (Ri) were estimated using
linear hindcasting to optimize the number of M predictor variables
(Pi) in the linear model (hindcastor):

Ri ¼
XM
i¼1

biPi þ ei (2)

where bi is the parameter coefficient to be optimized by
minimizing the mean square difference between the sampled
and predicted data, or the residual error (ei). The mean squared
error ðe2

oÞ is the expected value of the squared residuals and
represents the difference between the true value of the observa-
tions and the response predicted by the model. In the context of
predictability, the square root of the mean squared error (eo) is
referred to as the hindcast error. The predictive skill (SH) of a
hindcastor is evaluated using the sample variance (s2) of the
predictor variable such that:

SH ¼
s2 � e2

o

s2

� �
(3)

This hindcast skill is approximately equivalent to the r2 value
for a linear regression model and is defined as the proportion of the
variance explained by a linear hindcastor. Skill values range from 0
to 1 where an SH = 1 represents perfect skill (Siegel and Dickey,
1986).

The presence of chance statistical relationships between
variables where no true connection exists is a problem that
contributes to increases in artificial predictability as the number of
predictor variables, M, is increased in the hindcastor model (2). As
derived through Monte Carlo simulation by Davis (1976), the
expected value of artificial skill (SA) can be estimated from the
number of inputs, M, and the effective degrees of freedom, N*,
according to the formula

SA �
M

N�
(4)

The N* value is further estimated from N* = N/sd, where N is the
number of data points in the record normalized by sd, a measure of
the spatial decorrelation length. This value is the estimated
integral of the spatial autocorrelation function for each response
variable from zero lag to that of the first zero crossing (e.g. Siegel
and Dickey, 1986). The true predictive skill (ST) is thus defined as

ST ¼ SH � SA (5)

and is the proportion of the variance explained by the linear
hindcastor after accounting for artificial predictability (Siegel and
Dickey, 1986; Emery and Thomson, 1997).

In order to select predictor variables which contribute the most
to the estimation skill while still limiting the number of inputs M

and therefore SA, the hindcastors were developed using a stepwise
approach. With each increase in the number of predictor variables
Mi (i = 1, 2, 3, . . .), that variable which resulted in the greatest skill,
ST, was retained and applied to each successive hindcastor model
until a point was reached where, beyond M inputs, ST (M) > ST

(M + 1), and there was no longer an increase in predictability. Using
this approach, true skill was maximized while minimizing the
number of potentially autocorrelated variables in the model that
would artificially increase the hindcast skill. Each predictor
variable in the final model can be weighted in terms of its order
in the stepwise selection process, such that the successive
placement of predictors reflects the hierarchy of explanatory
power of each predictor in the hindcastor model.

Ultimately, an array of 37 physical, chemical, and optical
parameters (Table 2) were selected as the most relevant inputs for
model development in the prediction of the transformed cell
abundance and toxin concentration variables, with no model
exceeding 5 inputs before the true skill was maximized. Average
SST for the 5 days preceding each PnB cruise was also included as a
potential predictor in the models and was computed using a boxcar
moving-average window to smooth hourly SST measurements
from National Data Buoy Center (NDBC) east buoy 46053.



Fig. 6. Histograms of the lognormal response variables: (a) P-n abundance, (b) pDA, and (c) cDA (outliers removed from pDA and cDA distributions) overlaid with the

approximated normal density distribution.
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3.2.3. Full models

The best-fit full model for P-n abundance (ST = 0.75, N = 75) is
shown in Fig. 7. With the bloom threshold defined at
5.0 � 104 cells L�1 (�4.7 on the log-transformed scale), the model
correctly predicts �75% of bloom observations and �93% of non-
bloom observations, with �7% incorrect non-bloom estimates or
false positives (upper left quartile) and 25% false negatives. The five
most predictive parameters (Table 3) for transformed P-n

abundance were Rrs (412/555), ln(Si:N), Rrs (555), ap(490), and
Rrs (510/555). The negative relationship with Rrs (412/555)
suggests increased absorption by colored dissolved organic matter
(cDOM) and/or UV-absorbing accessory pigments such as those
found in some red-tide dinoflagellates (Kahru and Mitchell, 1998).
This could simply be due to the presence of cDOM as a by-product
of terrestrial run-off and/or phytoplankton blooms or could signal a
more interesting association between UV-absorption and Pseudo-

nitzschia spp. blooms. Reflectance at 555 nm has been shown to be
generally indicative of suspended sediment concentration (Toole
and Siegel, 2001; Otero and Siegel, 2004), and Rrs (510/555) is used
in ocean color chlorophyll algorithms (O’Reilly et al., 1998), here
indicative of the presence of high chlorophyll biomass. Despite the
lack of a significant correlation between the individual Pseudo-

nitzschia abundance and nutrient parameters discussed previously
(Table 1), negative log(Si:N) values explain a significant amount of
the variance in P-n abundance according to the hindcastor model.
Conversely, the significant individual correlations between P-n

abundance and both SST and CHL established earlier (Table 1) do
not prove important in explaining the overall variance of P-n

abundance in the full model.
The true skill of the best full model for log-transformed pDA

concentrations was maximized (ST = 0.58, N = 80) at four predictor
variables, which were Rrs (510/555), Si:P, SST, and SSS (Table 2,
Fig. 7). The next most significant variable (M = 5) in the stepwise
regression was log(Si:P) which only slightly increased the true skill
and did not improve the overall performance of the hindcastor.
Due to its obvious covariance with Si:P, it was excluded from the
most parsimonious model. At a critical threshold value of 64 ng DA
L�1 (�1.8 on the log-transformed scale), the best model correctly
predicts �83% of bloom and �91% of non-bloom observations, or
�9% false positive predictions. The Rrs (510/555) component is
again indicative of the strong negative relationship between this
waveband ratio and bloom episodes. As the second most
significant component in the model, the negative relationship
between Si:P and pDA values suggests that either reduced Si(OH)4

or increased PO4
= values are associated with toxin production.

However, given the individual negative correlations between these
two macronutrients and pDA (Table 1), it is probable that the
correlations are related to Si-limitation. This would seem to
contradict the significant negative and positive relationships with
SST and SSS, respectively, which point to the role of coastal
upwelling in driving increases in pDA levels. However, there is
some field evidence that DA events may occur at the end stage or
transitional period between upwelling and relaxation states
(Kudela et al., 2004a,b) when SST and SSS values would still bear



Fig. 7. Results of the best-fit full and remote-sensing models. The dashed lines represent the critical thresholds (5 � 104 cells L�1, 64 ng L�1, and 1.1 pg cell�1 for P-n

abundance, pDA, and cDA, respectively) used to evaluate correct and incorrect model estimates of ‘bloom’ and/or toxic events.
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an upwelling signature but surface nutrient availability would be
much diminished from that during early upwelling. Perhaps the
lack of importance for CHL in this model, despite its significant
correlation with pDA (Table 1), reflects a patchy nature in the
Table 3
Model statistics for the three response variables represented as best-fit full models, which

employ parameters that can be measured by satellite or other remote utilities.

Variable Best full model

Coefficients ST

log(P-n Abundance + 1 8.48 � 0 51 [Rrs(412/555)] � 0.05 [log(Si:N)]

� 83.5 [Rrs(555)] � 5.07 [ap(490)] � 2.28 [Rrs(510/555)]

0.75

log(pDA + 1) �77.2 � 2.42 [Rrs(510/555)] � 0.02 [Si:P] � 0.12 [SST]

+ 2.50 [SSS]

0.58

log(cDA + 1) 3.5 � 0.15 [SST] + 6.28 [ag(412)] + 0.02 [SSS]

� 1.27 [Rrs (510/555)] � 5.06 [ap(510)]

0.58
biomass field during the end stage of a bloom period when pDA
levels would be potentially greatest.

For cDA concentrations, the best full model has a skill of 58%
and contains similar predictors to the pDA full model: SST, ag(412),
include all possible parameters, and the best-fit remote-sensing models, which only

Best remote-sensing model

N Coefficients ST N

75 9.2 � 1.40 [Rrs(412/555)] � 548.63 [Rrs (555)]

+ 318.16 [Rrs(510)] � 0.072 [CHL] � 2.14 [Rrs(510/555)]

0.63 89

80 11.37 � 5.79 [Rrs(510/555)] � 0.31 [SST] + 1.58 [Rrs(490/555)]

+ 0.003 [rsDOY] � 0.174 [CHL]

0.47 86

75 4.83 � 0.16 [SST] � 48.72 [Rrs(412)] � 0.07 [CHL]

� 1.21 [Rrs(510/555)] � 9.03 [Rrs(510)rs]

0.46 72
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SSS, Rrs (510/555), and ap(510) (Table 3). With a critical threshold
of 1.1 pg DA cell�1 (or�0.32 on the log-transformed scale), the full
model correctly predicts almost all (98%) of the bloom observa-
tions (Fig. 7). However, it predicts only �70% of non-bloom
observations with �29% false positive predictions. The most
significant association in the model is a negative relationship
between cDA levels and SST, again suggestive of the link between
cold, upwelled waters and toxin concentration and further
supported by the importance of positive SSS in explaining cDA
(Table 3). Like the P-n abundance full model, the several optical
properties in the model for cDA again indicate the presence of
either cDOM or other UV-absorbing compounds (ag(412)) and the
relationship of absorption/reflectance at 510 and 555 nm with
chlorophyll biomass in temperate waters (O’Reilly et al., 1998). The
key differences between the pDA and cDA hindcastors are the lack
of a macronutrient predictor for cDA concentration and the
importance of absorption at 412 nm in explaining the variance of
the cellular DA pool.

3.2.4. Remote-sensing models

The models in this section contain components that can all be
derived remotely, and given this constraint, they do not perform as
well as the full models but may still serve as a useful management
tool. The best remote-sensing model for P-n abundance was
achieved by a similar stepwise process to that used above for the
full models, whereby with each addition of M variables, only the
remotely sensible variables were considered when assessing the
true skill. The resulting remote-sensing model contains the
predictors Rrs (412/555), Rrs (555), Rrs (510), CHL, and Rrs (510/
555) (Table 3). With a true skill of 0.63 (cf. ST = 0.75 for the full
model), it correctly predicts �53% of bloom and �96% of non-
bloom observations, with �4% false positive predictions (Fig. 7).
The Rrs (0+, l) and CHL components can all be measured via ocean
color imagery, either from the still-operable Sea-viewing Wide-
Field-of-View Sensor (SeaWiFS) or the more recent Moderate
Resolution Imaging Spectroradiometer (MODIS) Aqua satellites. A
second best remote-sensing model was developed by removing the
nutrient component from the best full model for P-n abundance
and substituting the ap(490) component with Rrs (490). Since
changes in backscatter are inversely related to changes in
absorption, it is reasonable to substitute the Rrs (l) value and
recalculate the parameter coefficients. This new model performs
with slightly less skill (ST = 0.61) and performance in the cost
function terms (�50% correct bloom).

The best remote-sensing model for pDA was also achieved by
the stepwise process used for the remote-sensing model of P-n

abundance, whereby only remotely sensible variables were
considered at each iterative increase of M inputs. The resulting
model performs with less skill (ST = 0.47, N = 86) than the full
model and contains the variables Rrs (510/555), SST, Rrs (490/555),
DOY, and CHL (Table 3, Fig. 7). It correctly predicts �76% of bloom
and �92% of non-bloom observations, and essentially the same
number of false positives (�8%; n = 3) as the full model. The
reflectance components relate to the presence of chlorophyll
absorption at those wavebands and can be estimated from satellite
radiometry; the CHL component can be estimated with ocean color
algorithms. Advanced Very High Resolution Radiometer (AVHRR)
or MODIS satellite imagery allows for the remote estimation of SST
values.

The remote-sensing model developed using the stepwise
approach described above for pDA, where only the most predictive,
remotely sensible variables are retained at each step, yielded less
skill than a remote-sensing model created by modifying the best
full model for cDA. In other words, when the absorption
parameters ag(412) and ap(510) in the full cDA model were
replaced by their associated Rrs (0+, l) values and the salinity term
was replaced by CHL, the hindcastor was then converted to a
remote-sensing model with a better true skill (ST = 0.48) than the
remote-sensing model developed through the alternative stepwise
regression process (Table 3). This best remote-sensing model
correctly predicts 95% of bloom and 62% of non-bloom observa-
tions with considerably more false positives (38%) than the
previous models for pDA and P-n abundance (Fig. 7). All
components of this model can be estimated with a combination
of SeaWiFS, MODIS, and AVHRR satellite imagery.

4. Model validation

An independent dataset of P-n abundance and DA concentra-
tions was used to validate the best-fit full and remote-sensing
models for the three log-transformed response variables. A full
suite of surface physical, chemical, phytoplankton, and domoic
acid data were recorded during a toxigenic P. australis bloom from
15 to 21 May 2003 on a channel-wide cruise conducted by the SBC-
LTER (Anderson et al., 2006). Due to the fact that in situ optical data
were not routinely collected on SBC-LTER cruises, for those models
which included either absorption or remote-sensing reflectance
components, the Rrs (0+, l) retrievals from concurrent SeaWiFS
satellite observations for the SBC were substituted. The remote-
sensing models were validated with a combination of in situ data
for SST values and SeaWiFS data for chlorophyll and Rrs (0+, l)
values.

SeaWiFS images for the SBC were obtained from high resolution
picture transmission (HRPT) data (Distributed Active Archive Data,
Code 902, NASA) and processed using operational algorithms
(McClain et al., 2004; Otero and Siegel, 2004). All SeaWiFS
overpasses that occurred during the May 2003 cruise period were
sampled, resulting in 33 LTER sampling locations with cloud-free
retrievals. Of these, the retrievals which most closely matched the
shipboard sampling date for a given SBC-LTER station were
selected, and a total of 16 locations sampled between 17 and 21
May 2003 were suitable for use in model validation (see Fig. 1). For
each of these 16 locations, above water, remote-sensing reflec-
tance was calculated at the six SeaWiFS wavebands (412, 443, 490,
510, 555, and 665 nm; e.g. Westberry and Siegel, 2005).

In order to test the full model for P-n abundance using SBC-LTER
data, the variable ap(490) was replaced with Rrs (490), which
reduces hindcastor performance somewhat (ST = 0.67; 65% correct
bloom predictions). Using field values of Si:N and SeaWiFS Rrs (0+,
l) data, the measured and predicted values of transformed P-n

abundance (N = 15) from the 2003 event are related by an r2 = 0.42
(p < 0.01), and the model correctly predicted 80% of bloom
observations (Fig. 8). The remaining predictions were all classified
as false negatives (n = 3) since none of the measured values of cell
abundance from the 2003 bloom fell below the designated bloom
threshold of 5.0 � 104 cells L�1. Validation of the best remote-
sensing model for P-n abundance required only the input of
SeaWiFS Rrs (0+, l) values for each component. The remote-sensing
model resulted in the same predictions as the full model with 80%
of the 2003 bloom measurements correctly identified and 20% false
negative predictions (r2 = 0.32, p = 0.01; Fig. 8).

Validation of the pDA full model required a combination of SBC-
LTER cruise data and SeaWiFS Rrs (510/555). The relationship
between measured and predicted toxin concentrations for the
2003 bloom (N = 15) was the same as for P-n abundance (r2 = 0.42,
p < 0.01). However, the pDA full model correctly predicted 100% of
sample values above the critical threshold of 64 ng L�1. Only one of
the 15 measured DA values used in the validation test fell below
the designated threshold, and this sample was overestimated (i.e.
false positive) by �550 ng L�1 by the full model (Fig. 8). The



Fig. 8. Using a combination of in situ data and channel-wide Rrs (0+, l) retrievals from a toxigenic Pseudo-nitzschia australis bloom independently sampled during an SBC-LTER

cruise from 15 to 21 May 2003, the full and remote-sensing models for P-n abundance, pDA, and cDA were validated. The r2 and p-values (95% C.I.) give a rough estimate of

model performance, while the dashed lines indicate the threshold values used to evaluate model performance.
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remote-sensing model for pDA performed similarly to the full
model in that it made the same proportion of correct bloom and
false positive predictions. However, the much weaker relationship
between measured and predicted values (r2 = 0.14, p = 0.17,
N = 15) resulted in an even greater overestimation of the false
positive point by �1350 ng L�1 (Fig. 8).

In order to test the best full model for cDA concentrations, the
ag(412) and ap(510) components were replaced with Rrs (0+, l)
values, which reduced the overall skill of the model by 5%. Using
the 2003 bloom survey data (N = 13), this modified model correctly
categorized all three cDA measurements that were above the
critical threshold of 1.1 pg cell�1 but overestimated the remaining
10 samples (i.e. 100% false positives). The poor fit between
measured and predicted values (r2 = 0.001, p = 0.94) is evident in
Fig. 8. Validation of the best remote-sensing model using a
combination of SeaWiFS Rrs (0+, l) and CHL retrievals with field SST
data gave the same results as those for the full model, but with a
strong negative relationship between measured and predicted
values (r2 = 0.18, Fig. 8). Some of the error in the performance of the
remote-sensing model we attribute to error in the SeaWiFS CHL
estimates (Otero and Siegel, 2004). However, substitution of in situ
fluorometric CHL values for the satellite values actually led to a
strong negative relationship between predicted and measured
values (r2 = 0.52) and a slightly poorer performance in the cost
function terms (i.e. 33% correct bloom observations and 90% false
positives).

5. Discussion

The results from this unique time series of environmental and
HAB-specific data across a channel-wide transect in the SBC
provide a clearer picture of the seasonal and interannual pattern of
Pseudo-nitzschia spp. blooms in the region than that obtained from
previous event-scale studies. These data reveal a new upper limit
of cellular and particulate DA values (cDA: 88 pg cell�1; pDA:
6000 ng L�1) that exceed earlier field measurements within the
SBC (max. cDA � 2 pg cell�1; max. pDA � 1684 ng L�1). Newly
reported measurements of DA in the Los Angeles Harbor
(Schnetzer et al., 2007) just south of the SCB are currently the
highest on record with a maximum cDA of 117 pg cell�1 and pDA of



Fig. 9. Model performance cast as a function of range criteria that assign low, medium, and high levels of P-n abundance, pDA, and cDA. For any month in the sampling period,

model predictions of cell abundance and toxin levels are compared with observations at each station in the PnB transect, revealing the difficulty in predicting the high end of

the range in these parameters.
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�12,000 ng L�1). This may either signify an increase in the
magnitude of toxic events over time or a past under-sampling
of the spatial and temporal variability of DA concentrations. If the
magnitude is indeed increasing, defining the factors responsible
still proves elusive. For instance, both 2005 and 2006 were years
with toxic blooms and DA-related marine mammal strandings in
the SBC. However, the magnitude of the 2005 spring bloom in
terms of toxic cell load was twofold greater than that in 2006
(Figs. 2 and 4). Moreover, it is not clear from the mean SST, CHL, or
nutrient fields that 2005 was marked by stronger upwelling or
other possible driving factors. The reverse, i.e. weaker upwelling,
could even be more likely given that the minimum SST and
maximum nutrient concentrations in the time series were
recorded for March 2006, not 2005. This scenario would seem
to support the existing field and laboratory evidence linking
nutrient-limitation or overall physiological stress to the magnitude
of DA production by Pseudo-nitzschia spp., but only with future
research could we adequately argue for an association between
upwelling and the magnitude of DA events.

6. Model performance

The statistical models developed in this study for estimating the
probability of toxigenic Pseudo-nitzschia spp. blooms from
environmental properties showed much better predictive skill
and performance for cell abundance alone than for DA concentra-
tions, whether particulate or cellular (Table 3, Fig. 7). The factors
leading to major DA events are often not the same conditions
favorable to Pseudo-nitzschia spp. bloom development, nor were
these factors necessarily measured as part of our sampling effort.
In the case of cell abundance, values were best estimated by a suite
of chlorophyll-related optical parameters and the ratio of Si(OH)4

to NO3
�. Together, these factors seem to identify the build-up of

biomass and the uptake of silicic acid by diatoms. Values of both
pDA and cDA were best estimated by upwelling and biomass-
associated relationships with Rrs (510/555), SST, and SSS. The key
difference between the two toxin models is the low Si:P
requirement for estimates of pDA and the cDOM absorption
parameter for estimates of cDA. This suggests that environmental
variability in cellular DA concentration is more associated with
growth stage of the Pseudo-nitzschia spp. population while
variations in the particulate DA pool are more controlled by
ambient nutrient availability.

When assessed using a single, bloom-threshold value, the
models exhibit a maximum 58% skill at accurately estimating toxin
concentration from in situ or remotely sensed data and a
maximum 98% probability for bloom-level DA loads. An additional
method for judging model performance is shown in Fig. 9. The
single thresholds are further subdivided to determine probabilities
of low, medium, and high toxic bloom levels, which is useful from
an operational perspective (e.g. C. Brown, http://coastwatch.noaa.-
gov/cbay_hab). We use the threshold values �104 cells L�1,
64 ng L�1, and �1 pg cell�1 for P-n abundance, pDA, and cDA,
respectively, to distinguish low from medium bloom/toxin levels.
The threshold values for high levels (105 cells L�1, 500 ng L�1, 10 pg
cell�1) were chosen to roughly reflect conditions associated with

http://coastwatch.noaa.gov/cbay_hab
http://coastwatch.noaa.gov/cbay_hab


C.R. Anderson et al. / Harmful Algae 8 (2009) 478–492 489
extreme DA/mammal stranding events in CA (Fig. 9, Trainer et al.,
2000; Anderson et al., 2006; Schnetzer et al., 2007). While it is
encouraging that the models differentiate low bloom/toxin levels
from all others with reasonable accuracy (max. 88%), the models
are less accurate at differentiating medium and high toxic bloom
levels at a given station during a given month (Fig. 9). This
underscores the challenge ahead for predicting extreme DA events
in the environment.

When all models were applied to the independent Pseudo-

nitzschia australis bloom dataset from May 2003, they greatly over-
predicted DA concentration, both particulate and cellular (Fig. 8).
One important, external source of error to consider in the
validation of these models is the poor statistical match-up
between SeaWiFS Rrs (0+, l) retrievals from May 2003 and those
reflectance spectra used in model development which were
acquired from shipboard radiometer data. Until regional atmo-
spheric correction algorithms are better tuned, this may remain a
hurdle for detection models that incorporate remote-sensing
reflectance components from SeaWiFS or MODIS-Aqua. Several
other possible sources of error in the HAB models are considered
below.

7. Circulation effects

The interaction between regional circulation and surface
phytoplankton biomass may help explain the difficulty in
accurately predicting local Pseudo-nitzschia spp. abundance and
DA levels from the environmental properties used in this modeling
exercise. For example, Marchetti et al. (2004) found that eddy
circulation and horizontal advection along the Washington coast
are important determinants of DA accumulation. In the SBC,
seasonal mesoscale eddies also appear to influence the entrain-
ment of toxigenic cells and subsequent accumulation of high cDA
levels within convergent eddy boundaries (Anderson et al., 2006).
In both cases, toxic cells were shown to have accumulated at
Fig. 10. MODIS-Aqua chlorophyll imagery from (a) September and (b) August 2005 indi

which may be the source of the high cDA event recorded on 20 September 2005 and h
convergent fronts most likely according to the mechanism
described by Franks (1992) for non-motile phytoplankton forms
at frontal zones. This type of physically induced accumulation of
HABs has important implications for the spatial prediction of
toxicity, which may require additional knowledge of the flow field
as can now be achieved using HF radar determinations of surface
currents.

To better understand possible circulation effects on predictions
of local toxin concentration in this study, we focused on the large
overestimation of cDA concentration in samples where none was
detected. These false positive populations from both the full and
remote-sensing models for cDA were examined in terms of what
distinguishes them from the correct estimates of cDA. In the case of
the full cDA model, a discrimination analysis using a Students t-
test with 95% confidence limits shows that the correct estimates of
cDA above the 1.1 pg cell�1 threshold were samples that co-
occurred with significantly lower SST, higher CHL and nutrient
concentrations, lower Rrs (412) and Rrs (510/555), and higher ap(l)
values than the samples in the false positive population. This is
generally due to the fact that the majority of high cDA samples are
from spring cruises (Fig. 2) when seasonal upwelling would lead to
cold, nutrient-rich, high-biomass (i.e. high particulate absorption,
low remote-sensing reflectance) surface conditions. The one
exception was the high cDA event (9–88 pg cell�1) recorded on
September 9, 2005 (Fig. 3) which was concurrent with moderate to
bloom-level Pseudo-nitzschia abundances (2.9 � 104–1.1 � 105

cells L�1) and typified by warm SST, low CHL and nutrient
concentrations, and higher Rrs (0+, l) values relative to the spring
bloom samples. Interestingly, this summer-time DA event appears
from MODIS-Aqua CHL imagery throughout September 2005 to
have been initiated by favorable conditions north of or just at Pt.
Conception and then advected into the SBC where surface waters
were then entrained into what might be a cyclonic eddy (Fig. 10a).
In other words, conditions within the SBC were quite possibly not
responsible for initiating the toxic bloom in this instance. However,
cates advection of high-biomass waters from Pt. Conception into the western SBC,

igh pDA event on 30 August 2005.
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secondary circulation effects within the SBC may have further
retained cells in nutrient-poor surface waters conducive to
increased toxicity (Pan et al., 1998).

The result of this circulation effect is that inclusion of the
September 2005 bloom samples in the training dataset forced the
Pseudo-nitzschia abundance and DA concentration models with
properties potentially unrelated to local, within-channel, toxic
bloom production. Indeed, the discriminant analysis reveals that
properties concurrent with samples in the false positive popula-
tion for the cDA full model are indistinguishable from those during
the September 2005 bloom. This becomes particularly important
for the remote-sensing model of cDA which is based on SST, CHL,
Rrs (412), and Rrs (510/555), all of which are significantly different
for the September 2005 population than for the remaining correct
bloom estimates. Similarly, the false positive population from the
full model of Pseudo-nitzschia abundance shares the same traits as
samples of Pseudo-nitzschia abundance from the September 2005
bloom and is significantly different from the correct bloom
estimates with respect to CHL, Rrs (443), and ap(412). It therefore
appears that the summertime anomaly of 2005 forced the Pseudo-

nitzschia abundance model in the same way it did the cDA models
but to a lesser extent in terms of the percentage of false positives
(�6% vs. �29%, respectively).

While the false positives signify those predictions of high toxin
concentration where no toxin existed, the false negative popula-
tion represents those samples where toxin concentrations were
above the designated threshold but were estimated below it. From
a management perspective, these scenarios could be considered
more worrisome (e.g. Wekell et al., 2002) and for predictions of
pDA, the models produced more false negative (�20%) results than
false positive (�9%). Discrimination of this population with respect
to the correct toxin estimates reveals that the underestimates
occurred during times of significantly higher SST, lower SSS, lower
CHL and nutrient concentrations, and higher Rrs (0+, l) values. In
short, �75% of the false negatives are from summertime episodes
of increased pDA in August–September 2005. It is clear that DA
events in summer pose the greatest predictive problems. MODIS-
Aqua CHL images again offer a secondary filter through which to
assess the increased probability of toxic blooms during summer
months (Fig. 10b). Validated imagery prior to and during the 30
August 2005 cruise shows a similar scenario to that later in
September with advection of waters from Pt. Conception into the
western Channel (Fig. 10b). Because conditions along the coast
north of the SBC are more conducive to bloom development during
summer than they are within the SBC, these scenarios require
closer examination when using remote detection methods for
HABs and may indicate the need for season-specific models.

8. Macronutrient control

Along with the possibility of trace metal control not measured
as part of this study (Maldonado et al., 2002; Ladizinsky, 2003;
Wells et al., 2005), many laboratory and field studies have
demonstrated the association between Si-limitation and DA
production when Si(OH)4 concentrations are low (Pan et al.,
1996, 1998; Kudela et al., 2004a,b; Marchetti et al., 2004), though
the exact mechanism is not clear. We can assess the potential role
of Si-limitation as expressed through Si:N or Si:P ratios when Si
concentrations are at limiting levels. The latter appears as a
significant predictor in the full models of Pseudo-nitzschia

abundance and pDA. For the full pDA model presented in
Table 3, there is a negative relationship with Si:P, suggesting a
correlation with Si-limitation. For the Pseudo-nitzschia abundance
model, on the other hand, a negative relationship with Si:N would
also indicate an association with Si-limitation but when NO3

�

concentrations are more replete (Table 3). This is in contrast to
field evidence from Monterey Bay (Kudela et al., 2004a,b),
Southern California (Schnetzer et al., 2007), and the SBC (Anderson
et al., 2006) which did not reveal a significant link between the
Pseudo-nitzschia-specific biomass and Si-limitation (Kudela et al.,
2004a,b) nor Si:N and Si:P ratios (Anderson et al., 2006) despite
significant relationships for DA production. However, dispropor-
tionate drawdown of Si(OH)4 is expected for Pseudo-nitzschia

blooms under nutrient-replete conditions when they are capable
of maintaining an Si:N of �2 (Pan et al., 1996) compared with the
Si:N�1 for other diatoms (Brzezinski, 1985; Turner et al., 1998). At
the onset of Si-limitation, they can reduce Si(OH)4 uptake (Pan
et al., 1996) and potentially out-compete other diatoms (Egge and
Aksnes, 1992) during the nutrient-poor transitional stages from
upwelling periods to relaxation periods (Kudela et al., 2004a,b).

Interestingly, while Si-limitation might help explain pDA
concentrations, the full cDA model does not include any nutrient
parameters, which is consistent with findings from the May 2003
bloom in the SBC when only pDA distributions were associated
with nutrient concentrations, while cDA was most correlated with
variability in the SST field (Anderson et al., 2006). However, in their
efforts to predict cellular DA levels in populations of P. pungens f.

multiseries, Blum et al. (2006) derived statistical models which did
rely on nutrient ratio indicators of Si-limitation. The difference
there was perhaps their inclusion of a large laboratory dataset of
cDA in cultures where Si-limitation is more easily forced and
observed. Along with SST, almost all the parameters in our full
model for cDA can be remotely sensed with the exception of SSS
(though satellite-derived salinity products are forthcoming with
the NASA Aquarius mission.). The reduction in skill between the
full (ST = 0.60) and remote-sensing models (ST = 0.48) for cDA may
either be attributed to the replacement of SSS with CHL or by the
replacement of the absorption components with Rrs (412) and Rrs

(510). It is also important to note that while the remote-sensing
model for cDA has a greater skill than that for pDA, the two pDA
models performed better in the cost function terms (Figs. 7 and 8).
Ultimately, the development and validation of a remote-sensing
model for accurately predicting DA concentrations was more
successful for pDA than for cDA, despite the apparently greater
dependence of the particulate pool on the in situ nutrient regime.

9. Conclusions

For detection of toxigenic blooms of Pseudo-nitzschia in the SBC,
models that accurately predict environmental DA concentrations
will be more helpful to coastal managers than those that only
estimate the abundance of potentially toxic cells of Pseudo-

nitzschia spp. The empirical method used here to develop a model
for remotely detecting the particulate pool of DA in the SBC is
useful in that it generally constrains estimates to the presence or
absence of pDA but does not accurately estimate absolute
concentrations of DA. Current methods for safeguarding the public
from harmful DA events rely on the monitoring of bivalve mollusc
populations with an FDA regulatory limit of 20 ppm (e.g. Lefebvre
et al., 2002). However, variations in depuration times and other
aspects of invertebrate physiology (e.g. Ferdin et al., 2002) do not
allow for the easy translation of this value to an in situ DA
concentration for which no regulatory limit presently exists.
Furthermore, the relationship between environmental DA levels
and neurotoxicity in fish and mammals remains elusive (Lefebvre
et al., 2002). Remote detection tools for DA presence/absence can
however be used by managers to track the fate and transport of
toxin-containing, hydrographic features through the use of near
real-time satellite imagery of ocean color, SST, and surface currents
which may further guide the selective testing of molluscs in high-
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risk locations along the SBC coast. Future efforts will employ a
combination of toxin-monitoring, satellite, and dynamically
downscaled forecasting products to test these empirical models
in the Santa Barbara Channel. This approach may also prove useful
for the entire Southern California Bight region where large DA
events appear to be a recent phenomenon (Busse et al., 2006;
Schnetzer et al., 2007) with the potential to increase in intensity in
the years to come.
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